Chemometrics is the science of extracting information from chemical systems by data-driven methods. The information from data is extracted by using multivariate statistics, applied mathematics, and computer science. After the application of multivariate data analysis qualitative and quantitative information can be obtained from the data provided. Some of the most commonly employed linear algorithms in a multivariate data analysis include principal component analysis (PCA), partial least square regression (PLS), principal component regression (PCR), and multiple linear regression (MLR).
· Bhatia, H., Mehdizadeh, H., Drapeau, D., Yoon, S., 2018. In-line monitoring of amino acids in mammalian cell cultures using raman spectroscopy and multivariate chemometrics models. Engineering in Life Sciences 18, 55–61. https://doi.org/10.1002/elsc.201700084
· Claßen, J., Graf, A., Aupert, F., Solle, D., Höhse, M., Scheper, T., 2019. A novel LED-based 2D-fluorescence spectroscopy system for in-line bioprocess monitoring of Chinese hamster ovary cell cultivations-Part II. Eng Life Sci 19, 341–351. https://doi.org/10.1002/elsc.201800146
· Ferro, L., Gojkovic, Z., Gorzsas, A., Funk, C., 2019. Statistical Methods for Rapid Quantification of Proteins, Lipids, and Carbohydrates in Nordic Microalgal Species Using ATR-FTIR Spectroscopy. Molecules 24. https://doi.org/10.3390/molecules24183237
· Gao, F.Z., Sa, M., Teles, I., Wijffels, R.H., Barbosa, M.J., 2021. Production and monitoring of biomass and fucoxanthin with brown microalgae under outdoor conditions. Biotechnol. Bioeng. 118, 1355–1365. https://doi.org/10.1002/bit.27657
· Sá, M., Bertinetto, C.G., Ferrer-Ledo, N., Jansen, J.J., Wijffels, R., Crespo, J.G., Barbosa, M., Galinha, C.F., 2020a. Fluorescence spectroscopy and chemometrics for simultaneous monitoring of cell concentration, chlorophyll and fatty acids in Nannochloropsis oceanica. Sci Rep 10, 7688. https://doi.org/10.1038/s41598-020-64628-7
· Sá, M., Ramos, A., Monte, J., Brazinha, C., Galinha, C.F., Crespo, J.G., 2020b. Development of a monitoring tool based on fluorescence and climatic data for pigments profile estimation in Dunaliella salina. J Appl Phycol 32, 363–373. https://doi.org/10.1007/s10811-019-01999-z
· Sandor, M., Rüdinger, F., Bienert, R., Grimm, C., Solle, D., Scheper, T., 2013. Comparative study of non-invasive monitoring via infrared spectroscopy for mammalian cell cultivations. J Biotechnol 168, 636–645. https://doi.org/10.1016/j.jbiotec.2013.08.002
· Shao, Y.N., Pan, J., Zhang, C., Jiang, L.L., He, Y., 2015. Detection in situ of carotenoid in microalgae by transmission spectroscopy. Comput. Electron. Agric. 112, 121–127. https://doi.org/10.1016/j.compag.2014.10.008
· Solle, D., Geissler, D., Stärk, E., Scheper, T., Hitzmann, B., 2003. Chemometric modelling based on 2D-fluorescence spectra without a calibration measurement. Bioinformatics 19, 173–177. https://doi.org/10.1093/bioinformatics/19.2.173
· Solle, D., Hitzmann, B., Herwig, C., Pereira Remelhe, M., Ulonska, S., Wuerth, L., Prata, A., Steckenreiter, T., 2017. Between the poles of data-driven and mechanistic modeling for process operation. Chemie Ingenieur Technik 89, 542–561. https://doi.org/10.1002/cite.201600175
Institute of Technical Chemistry
Leibniz University of Hannover
Callinstraße 5
30167 Hannover, Germany
Tel.: + 49 511 762 17515
Fax: + 49 511 762 3004
Email: solle@iftc.-uni-hannover.de
Institute of Technical Chemistry
Leibniz University Hanover
Callinstraße 3-9
30167 Hanover
Read the privacy policy of this site.